Mathématiques

Formes quadratiques dégénérées et vecteurs isotropes

Définitions:

1) une forme quadratique Q est dégénérée si et seulement si sa forme bilinéaire associée l'est.
2) un vecteur X est isotrope pour une forme quadratique Q si Q(X) = 0

exemple: sur ℝ² notons X=(x,y) X₁=(x₁, y₁) X₂= (x₂, y₂)

Q la forme quadratique et φ sa forme bilinéaire associée.

Elles sont liées par l'identité de polarisation:

Q(X₁+X₂) - Q(X₁) - Q(X₂) = 2 φ(X₁,X₂)

Si Q(X)=x² alors φ(X₁,X₂) = x₁x₂ qui est dégénérée, (0,1) étant orthogonal à tout vecteur

Si Q(X)= 2xy alors φ(X₁,X₂)= x₁y₂+y₁x₂ qui n'est pas dégénérée, le déterminant de sa matrice dans la base canonique de ℝ² vaut -1, pourtant cette forme quadratique possède des vecteurs isotropes comme (0,1) ou (3,0)

Conclusion: une forme quadratique peut posséder des vecteurs isotropes sans être dégénérée.

sciences: 

ℝ-algèbre de division

Théorème de Frobenius: Toute ℝ-algèbre (associative) de division de dimension finie non commutative est isomorphe à ℍ.

Réf: Rotman Advanced algebra p 735.

Théorème d'Hurwitz: Toute ℝ-algèbre (non nécessairement associative) normée (∀(x,y) ∈ A² ‖x.y‖=‖x‖.‖y‖ ) unitaire est isomorphe à ℝ, ℂ, ℍ ou aux Octonions.[1]page 166

Ce résultat se généralise si l'algèbre n'est pas unitaire. L'hypothèse de dimension finie est ici superflue. Ce théorème se généralise à tout corps.

Remarque: dans le procédé de doublement de Cayley-Dickson N(a ⊕ bm) = n(a) − µn(b) [1]page 64, où n est la norme sur l'algèbre de "départ", la norme N de la nouvelle algèbre est définie sur ℝ si et seulement si µ est strictement négatif . Ce qui revient à prendre µ=-1 dans ℝ.

Remarque: on peut remplacer la norme par une forme quadratique isotrope, on définit alors les complexes,quaternions, octonions fendus (split) [1]page 66 qui ne forment pas des algèbres de division.

Réf: Conway, Smith chapitre 6 p 72

Références

  1. MacCrimmon K
    2004.  A Taste of Jordan algebras. Universitext. :589.
sciences: 

Automorphismes d'algèbres de division normées

La caractérisation des automorphismes φ des algèbres de division normées A = ℂ, ℍ ou Octonions

L'automorphisme d'algèbre normée vérifie par définition

1) φ est bijectif
2) φ est ℝ linéaire
3) ∀(x,y) ∈ A² ‖φ(x.y)‖=‖φ(x)‖.‖φ(y)‖

Ⅰ) Complexes

φ est ou bien l'identité ou la conjugaison.

À noter que si on lève l'hypothèse sur la conservation de la norme (module) il existe des automorphismes de corps sur ℂ non continus.
réf: http://fr.wikipedia.org/wiki/Automorphisme_de_corps_non_continu_de_C
Une conséquence de l'axiome du choix non dénombrable.

Réf: Arnaudès Fraysse Algèbre page 221

Ⅱ) Quaternions

1) Tout automorphisme du corps ℍ est intérieur.

Réf: Bourbaki, Topologie VIII 25 exercice 5

2) Une généralisation :

Théorème: soit A un anneau semi-simple, C son centre, et u un automorphisme de A. On suppose que A est un C-module de type fini, et que u(x)=x
pour tout x de C, Alors u est un automorphisme intérieur. BA8 page 254

Corollaire1 : Si E est un espace vectoriel de dimension finie sur le corps, alors tout endomorphisme des K-algèbres End(K,V) et M(n,K) est intérieur.

Corollaire2 : si un corps K est de degré fini sur son centre, tout automorphisme qui laisse les éléments de C fixes est intérieur.

Or d'après BA8 page 355 une algèbre de quaternions sur le corps K de type (a,b,c) est centrale simple si et seulement si
(4a+b²)c est différent de zéro (ce qui est vérifié par les quaternions de Hamilton de type (-1,0,-1)), dans ce cas tout automorphisme laissant K fixe est intérieur.

Ⅲ) Octonions

L'ensemble des ℝ automorphisme d'algèbre normée des octonions est le groupe de Lie G₂ AdamsLie

Ⅳ) Réels:

Le seul automorphisme de corps est l'identité, l'hypothèse sur la norme (valeur absolue) n'est pas nécessaire. L'existence d'un ordre   total sur ℝ s'y substitue.

Arnaudiès Fraysse Analyse page 22 et 30

sciences: 

Pages

S'abonner à RSS - Mathématiques